You are given coins of different denominations and a total amount of money. Write a function to compute the number of combinations that make up that amount. You may assume that you have infinite number of each kind of coin.
Note: You can assume that
- 0 <= amount <= 5000
- 1 <= coin <= 5000
- the number of coins is less than 500
- the answer is guaranteed to fit into signed 32-bit integer
Example 1:
Input: amount = 5, coins = [1, 2, 5] Output: 4 Explanation: there are four ways to make up the amount: 5=5 5=2+2+1 5=2+1+1+1 5=1+1+1+1+1
Example 2:
Input: amount = 3, coins = [2] Output: 0 Explanation: the amount of 3 cannot be made up just with coins of 2.
Example 3:
Input: amount = 10, coins = [10] Output: 1
Subscribe to see which companies asked this question.
class Solution {
public:
int change(int amount, vector<int> coins) {
/* // Recursive.
if (amount == 0) {
return 1;
}
if (amount < 0 || coins.size() == 0) {
return 0;
}
int denom = coins[0];
int factor = 0, sol = 0;
coins.erase(coins.begin());
while (denom * factor <= amount) {
sol += change(amount - denom * factor, coins);
factor++;
}
return sol;
*/
// Dynamic.
int ch[amount + 1][coins.size() + 1];
for (int i = 0; i < coins.size() + 1; i++) {
ch[0][i] = 1;
}
for (int i = 1; i < amount + 1; i++) {
ch[i][0] = 0;
}
for (int i = 1; i < amount + 1; i++) {
for (int j = 1; j < coins.size() + 1; j++) {
int sol = 0;
int factor = 0;
while (factor * coins[j - 1] <= i) {
sol += ch[i - factor * coins[j - 1]][j - 1];
factor++;
}
ch[i][j] = sol;
}
}
return ch[amount][coins.size()];
}
};
public:
int change(int amount, vector<int> coins) {
/* // Recursive.
if (amount == 0) {
return 1;
}
if (amount < 0 || coins.size() == 0) {
return 0;
}
int denom = coins[0];
int factor = 0, sol = 0;
coins.erase(coins.begin());
while (denom * factor <= amount) {
sol += change(amount - denom * factor, coins);
factor++;
}
return sol;
*/
// Dynamic.
int ch[amount + 1][coins.size() + 1];
for (int i = 0; i < coins.size() + 1; i++) {
ch[0][i] = 1;
}
for (int i = 1; i < amount + 1; i++) {
ch[i][0] = 0;
}
for (int i = 1; i < amount + 1; i++) {
for (int j = 1; j < coins.size() + 1; j++) {
int sol = 0;
int factor = 0;
while (factor * coins[j - 1] <= i) {
sol += ch[i - factor * coins[j - 1]][j - 1];
factor++;
}
ch[i][j] = sol;
}
}
return ch[amount][coins.size()];
}
};
=====================
/******************************************************************************
Online C++ Compiler.
Code, Compile, Run and Debug C++ program online.
Write your code in this editor and press "Run" button to compile and execute it.
*******************************************************************************/
#include <iostream>
#include <vector>
#include <map>
using namespace std;
int helper(vector<int>& input, int idx, int target,
map<string, int>& mp) {
string key = to_string(idx) + ":" + to_string(target);
if (mp.count(key) != 0) {
return mp[key];
}
if (idx >= input.size()) {
mp[key] = 0;
return 0;
}
if (target < 0) {
mp[key] = 0;
return 0;
} else if (target == 0) {
mp[key] = 1;
return 1;
}
int a = helper(input, idx, target - input[idx], mp);
int b = helper(input, idx + 1, target, mp);
mp[key] = a + b;
return a + b;
}
int minWays(vector<int>& input, int target) {
/*
- recursive & memoization
map<string, int> mp;
int ans = helper(input, 0, target, mp);
return mp["0:" + to_string(target)];
*/
//- dynamic programming
if (input.size() == 0) {
return 0;
}
vector<int> dp(target + 1, 0);
dp[0] = 1;
/*
// This will give total permutations.
for (int i = 1; i <= target; i++) {
for (auto value : input) {
if (i - value >= 0) {
dp[i] += dp[i - value];
}
}
}
*/
// But what we need is just the combination. So,
for (auto value: input) {
for (int i = value; i <= target; i++) {
dp[i] += dp[i - value];
}
}
return dp[target];
}
int main()
{
cout<<"Hello World" << endl;
vector<int> input;
int target;
// Test case 1:
input = {1, 2, 5};
target = 0;
cout << minWays(input, target) << endl;
// Test case 2:
input.clear();
input = {};
target = 5;
cout << minWays(input, target) << endl;
// Test case 3:
input.clear();
input = {1, 2, 5};
target = 5;
cout << minWays(input, target) << endl;
// Test case 4:
input.clear();
input = {1, 5, 15};
target = 125;
cout << minWays(input, target) << endl;
return 0;
}