Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
For example,
Given nums =
Given nums =
[1,3,-1,-3,5,3,6,7]
, and k = 3.Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
Therefore, return the max sliding window as
[3,3,5,5,6,7]
.
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
class Solution {
public:
pair<int, int> findMax(vector<int>& nums, int st ,int end) {
pair<int,int> ans = make_pair(INT_MIN, 0);
// assuming k is always valid. i.e. less than nums.size().
for (int i = st; i <= end; i++) {
if (nums[i] > ans.first) {
ans = make_pair(nums[i], i);
}
}
return ans;
}
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
vector<int> ans;
if (nums.size() == 0) {
return ans;
}
int st = 0, end = k - 1;
pair<int,int> first_max = findMax(nums, st, end);
ans.push_back(first_max.first);
for (int i = k; i < nums.size(); i++) {
if (nums[i] > first_max.first) {
first_max = make_pair(nums[i], i);
} else if ((i - k) >= first_max.second) {
first_max = findMax(nums, st + i - k + 1, end + i - k + 1);
}
ans.push_back(first_max.first);
}
return ans;
}
};
No comments:
Post a Comment