Given an integer array with all positive numbers and no duplicates, find the number of possible combinations that add up to a positive integer target.
Example:
nums = [1, 2, 3] target = 4 The possible combination ways are: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1) Note that different sequences are counted as different combinations. Therefore the output is 7.
Follow up:
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?
What if negative numbers are allowed in the given array?
How does it change the problem?
What limitation we need to add to the question to allow negative numbers?
============= Recursive ============ . (Time limit exceed)
class Solution {
public:
int combinationSum4(vector<int>& nums, int target) {
int ans = 0;
helper(nums, 0, target, ans);
return ans;
}
void helper(vector<int>& nums, int sum, int target, int& ans) {
if (sum == target) {
ans++;
}
if (sum >= target) {
return;
}
for (int num : nums) {
sum += num;
helper(nums, sum, target, ans);
sum -= num;
}
return;
}
};
============= DP (similar to climbing stairs problem =========
class Solution { public: int combinationSum4(vector<int>& nums, int target) { vector<int> dp(target + 1); dp[0] = 1; for (int i = 1; i <= target; ++i) { for (auto a : nums) { if (i >= a) dp[i] += dp[i - a]; } } return dp.back(); } };
or
class Solution { public: int combinationSum4(vector<int>& nums, int target) { vector<int> dp(target + 1); dp[0] = 1; sort(nums.begin(), nums.end()); for (int i = 1; i <= target; ++i) { for (auto a : nums) { if (i < a) break; dp[i] += dp[i - a]; } } return dp.back(); } };
or ================ Efficient recursive ==============
class Solution {
public: int combinationSum4(vector<int>& nums, int target) { unordered_map<int, int> memo; return helper(nums, target, memo); } int helper(vector<int>& nums, int target, unordered_map<int, int>& memo) { if (target < 0) return 0; if (target == 0) return 1; if (memo.count(target)) return memo[target]; int res = 0, n = nums.size(); for (int i = 0; i < n; ++i) { res += helper(nums, target - nums[i], memo); } return memo[target] = res; } };
No comments:
Post a Comment