Given a positive integer n, find the least number of perfect square numbers (for example,
1, 4, 9, 16, ...
) which sum to n.
Example 1:
Input: n =12
Output: 3 Explanation:12 = 4 + 4 + 4.
Example 2:
Input: n =13
Output: 2 Explanation:13 = 4 + 9.
class Solution {
public:
int numSquares(int n) {
// recursion done with one for loop.
if (n < 4) {
return n;
}
// Dynamic
vector<int> dp(n + 1, INT_MAX);
dp[0] = 0; dp[1] = 1; dp[2] = 2; dp[3] = 3;
for (int i = 4; i <= n; i++) {
if (dp[i] == INT_MAX) {
for (int j = 1; j <= sqrt(i); j++) {
dp[i] = min(dp[i], dp[i - j*j] + 1);
}
}
}
return dp[n];
}
};
==================== Efficient one ==========
int numSquares(int n) { int dp[n+1]; dp[0] = 0; dp[1] = 1; for(int i=2; i<=n; i++){ dp[i]=i; for(int j=1; j*j<=i; j++){ int x = dp[i-j*j]+1; dp[i]= min(dp[i],x); } } return dp[n]; }