Given a collection of candidate numbers (
candidates
) and a target number (target
), find all unique combinations in candidates
where the candidate numbers sums to target
.
Each number in
candidates
may only be used once in the combination.
Note:
- All numbers (including
target
) will be positive integers. - The solution set must not contain duplicate combinations.
Example 1:
Input: candidates =[10,1,2,7,6,1,5]
, target =8
, A solution set is: [ [1, 7], [1, 2, 5], [2, 6], [1, 1, 6] ]
Example 2:
Input: candidates = [2,5,2,1,2], target = 5, A solution set is: [ [1,2,2], [5] ]
class Solution {
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<vector<int>> ans;
std::sort(candidates.begin(), candidates.end());
vector<int> curr;
dfs(candidates, target, 0, ans, curr);
return ans;
}
private:
void dfs(const vector<int>& candidates,
int target, int s,
vector<vector<int>>& ans,
vector<int>& curr) {
if (target == 0) {
ans.push_back(curr);
return;
}
for (int i = s; i < candidates.size(); ++i) {
int num = candidates[i];
if (num > target) return;
if (i > s && candidates[i] == candidates[i - 1]) continue;
curr.push_back(num);
dfs(candidates, target - num, i + 1, ans, curr);
curr.pop_back();
}
}
};
/*
class Solution {
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<vector<int>> sol;
vector<int> ans;
if (candidates.size() == 0) {
return sol;
}
helper(candidates, 0, ans, sol, target);
return sol;
}
void helper(vector<int>& candidates, int idx, vector<int> ans,
vector<vector<int>>& sol, int target) {
if (idx == candidates.size() || target == 0) {
if (target == 0) {
sol.push_back(ans);
}
return;
}
for (int i = idx; i < candidates.size(); i++) {
if (target - candidates[i] >= 0) {
ans.push_back(candidates[i]);
helper(candidates, i + 1, ans, sol, target - candidates[i]);
ans.pop_back();
}
helper(candidates, i + 1, ans, sol, target);
}
}
};
*/
No comments:
Post a Comment