Thursday, April 8, 2021

1650. Lowest Common Ancestor of a Binary Tree III

 Given two nodes of a binary tree p and q, return their lowest common ancestor (LCA).

Each node will have a reference to its parent node. The definition for Node is below:

class Node {
    public int val;
    public Node left;
    public Node right;
    public Node parent;
}

According to the definition of LCA on Wikipedia: "The lowest common ancestor of two nodes p and q in a tree T is the lowest node that has both p and q as descendants (where we allow a node to be a descendant of itself)."

 

Example 1:

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: The LCA of nodes 5 and 1 is 3.

Example 2:

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: The LCA of nodes 5 and 4 is 5 since a node can be a descendant of itself according to the LCA definition.

Example 3:

Input: root = [1,2], p = 1, q = 2
Output: 1

 

Constraints:

  • The number of nodes in the tree is in the range [2, 105].
  • -109 <= Node.val <= 109
  • All Node.val are unique.
  • p != q
  • p and q exist in the tree.

/*
// Definition for a Node.
class Node {
public:
    int val;
    Node* left;
    Node* right;
    Node* parent;
};
*/

class Solution {
public:
    Node* lowestCommonAncestor(Node* p, Node * q) {
        unordered_set<Node*> st;
        while (st.count(p) == 0) {
            if (p == NULL) {
                break;
            }
            st.insert(p);
            p = p -> parent;
        }
        
        Node *ans = NULL;
        while (1) {
            if (q == NULL) {
                break;
            }
            if (st.count(q) != 0) {
                return q;
            } else {
                q = q -> parent;
                if (q == q -> parent) {
                    return NULL;
                }
            }
        }
        return NULL;
    }
};

/*

// Another approach ....

 Node* lowestCommonAncestor(Node* p, Node * q) {
        // search upwards from p and q, adding each found node to a set
        // if the node being added that is reachable from either p or q already exists in the set
        // then we have found the lowest common ancestor
        
        std::unordered_set<Node*> parents = {};
        
        Node* s = p;
        Node* t = q;
        while (s != nullptr || t != nullptr) {
            if (s != nullptr) {
                if (parents.find(s) != parents.end())
                    return s;
                parents.insert(s);
                s = s->parent;
            }
            if (t != nullptr) {
                if (parents.find(t) != parents.end())
                    return t;
                parents.insert(t);
                t = t->parent;
            }
        }
        return nullptr;
    }


*/

No comments:

Post a Comment