Given the root
of a binary search tree and the lowest and highest boundaries as low
and high
, trim the tree so that all its elements lies in [low, high]
. Trimming the tree should not change the relative structure of the elements that will remain in the tree (i.e., any node's descendant should remain a descendant). It can be proven that there is a unique answer.
Return the root of the trimmed binary search tree. Note that the root may change depending on the given bounds.
Example 1:
Input: root = [1,0,2], low = 1, high = 2 Output: [1,null,2]
Example 2:
Input: root = [3,0,4,null,2,null,null,1], low = 1, high = 3 Output: [3,2,null,1]
Example 3:
Input: root = [1], low = 1, high = 2 Output: [1]
Example 4:
Input: root = [1,null,2], low = 1, high = 3 Output: [1,null,2]
Example 5:
Input: root = [1,null,2], low = 2, high = 4 Output: [2]
Constraints:
- The number of nodes in the tree in the range
[1, 104]
. 0 <= Node.val <= 104
- The value of each node in the tree is unique.
root
is guaranteed to be a valid binary search tree.0 <= low <= high <= 104
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* trimBST(TreeNode* root, int low, int high) {
if (root == NULL) {
return NULL;
}
if (root -> val > high) {
return trimBST(root -> left, low, high);
} else if (root -> val < low) {
return trimBST(root -> right, low, high);
}
root -> left = trimBST(root -> left, low, high);
root -> right = trimBST(root -> right, low, high);
return root;
}
};
No comments:
Post a Comment